sábado, 22 de fevereiro de 2020


TRANS-QUÃNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]


  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • x
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




Orbitais atômicos (português brasileiro) ou orbitais atómicas (português europeu) de um átomo, é a denominação dos estados estacionários da função de onda de um elétron (funções próprias do Hamiltoniano (H) na equação de Schrödinger , onde  é a função de onda).[1] Entretanto, os orbitais não representam a posição exata do elétron no espaço, que não pode ser determinada devido à sua natureza ondulatória; apenas delimitam uma região do espaço na qual a probabilidade de encontrar o elétron é mais alta. [2]

Números quânticos[editar | editar código-fonte]

  • O valor do número quântico  (número quântico principal ou primário, que apresenta os valores  [também representado por ]) define o tamanho do orbital. Quanto maior o número, maior o volume do orbital. Também é o número quântico que tem a maior influência na energia do orbital.
  • O valor do número quântico  (número quântico secundário ou azimutal, que apresenta os valores ) indica a forma do orbital e o seu momento angular. O momento angular é determinado pela equação:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 



A notação científica (procedente da espectroscopia) é a seguinte:
  • , orbitais 
  • , orbitais 
  • , orbitais 
  • , orbitais 
Para os demais orbitais segue-se a ordem alfabética.
  • O valor do  (número quântico terciário ou magnético, que pode assumir os valores ) define a orientação espacial do orbital diante de um campo magnético externo. Para a projeção do momento angular diante de um campo externo, verifica-se através da equação:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 



  • O valor de  (número quântico magnético de spin ou spin) pode ser . O valor de  que equivale a uma valor fixo .
Pode-se decompor a função de onda empregando-se o sistema de coordenadas esféricas da seguinte forma:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 



Onde
  •  representa a distância do elétron até o núcleo, e
  •  a geometria do orbital.
Para a representação do orbital emprega-se a função quadrada,  
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 



  , já que esta é proporcional à densidade de carga e, portanto, a densidade de probabilidade, isto é, o volume que encerra a maior parte da probabilidade de encontrar o elétron ou, se preferir, o volume ou a região do espaço na qual o elétron passa a maior parte do tempo.




Os elementos orbitais de um corpo celeste são um conjunto de seis parâmetros que permitem definir a sua órbita em torno de qualquer outro corpo celeste de forma totalmente unívoca. Estas seis quantidades são:[1][2][3][4]
Por vezes, no lugar da anomalia média da época, utiliza-se a anomalia média de um certo tempo (), ou a longitude média, ou a anomalia verdadeira ou, mais raramente, a anomalia excêntrica.
Por vezes também a época da passagem pelo periastro substitui a anomalia média. Em lugar do semieixo maior pode-se utilizar também o período orbital.
Pode usar-se a  (longitude do periastro), que se relaciona com a longitude do nó ascendente () e com o argumento do periastro () mediante a seguinte expressão:
Os três primeiros elementos orbitais simplesmente são tais que os ângulos de Euler definem a orientação da órbita no espaço, enquanto os restantes três definem a forma da órbita e a posição do corpo na órbita.
  • A inclinação e a longitude do nó ascendente indicam o plano da órbita.
  • O argumento do periastro orienta a órbita dentro do seu plano.
  • O semieixo maior (ou o período, indistintamente) determina o tamanho da órbita.
  • A excentricidade determina a sua forma.
  • A época da passagem pelo periastro (ou a anomalia média) permitem situar o objeto na sua órbita.
Os seis elementos anteriores surgem no problema dos dois corpos sem perturbações externas. Uma trajetória perturbada realista é representada como uma sucessão instantânea de cónicas que partilham um dos seus focos. Estes elementos orbitais chamam-se osculatrizes e a trajetória é sempre tangente a esta sucessão de cónicas.
Os elementos orbitais de objetos reais tendem a alterar-se ao longo do tempo. A evolução dos elementos orbitais tem lugar devido fundamentalmente à força gravitacional dos outros corpos. No caso de satélites, devido à falta de esfericidade do primário, ou ao atrito com a atmosfera. Isto é fundamental nos satélites artificiais da Terra ou de outros planetas. No caso de cometas, a expulsão de gás e a pressão da radiação, ou as forças eletromagnéticas introduzem pequenas forças não gravitacionais que devem ser consideradas para explicar o seu movimento.




período orbital é o tempo que leva um planeta (ou outro astro) a fazer uma órbita completa.
Existem vários tipos de períodos orbitais para astros à volta do Sol:
  • período sideral é o tempo que leva o objeto a fazer uma volta completa ao sol, relativamente às estrelas. Esta é considerada como sendo o verdadeiro período orbital do astro.
  • Período sinódico é o tempo que leva um astro a reaparecer no mesmo local em sucessiva conjunções com o Sol e é o período orbital aparente (a partir da Terra) do astro. O período sinódico difere do sideral na medida em que a Terra também orbita o Sol.
  • período draconítico é o tempo que decorre entre duas passagens de um astro no seu nodo ascendente, o ponto da sua órbita onde atravessa a elipse do hemisfério sul para o hemisfério norte.
  • período anomalístico é o tempo que decorre entre duas passagens de um astro no seu perélio.

Cálculo[editar | editar código-fonte]

Corpo de massa desprezível em órbita kepleriana[editar | editar código-fonte]

Gráfico log-log do período (T) em função do semieixo maior (a) de corpos celestes que orbitam em torno do Sol. A inclinação de 3/2 mostra que T ∝ a3/2.
Pela terceira Lei de Kepler, para corpos que orbitam um outro corpo de massa muito maior em órbitas circulares ou elípticas, o quadrado do período T é proporcional ao cubo do semieixo maior a. Ou seja:
Se o corpo central tiver massa M, então o período orbital pode ser calculado através de:
Historicamente, como é muito mais fácil medir distâncias (a) e períodos (T) do que massas de corpos celestes (M) ou a constante da gravitação universal (G), a precisão de medida de G M costuma ser bem maior que a de G ou de M, portanto a equação acima costuma ser apresentada como:
em que  depende do corpo central (normalmente o Sol ou a Terra).

Dois corpos em órbita kepleriana[editar | editar código-fonte]

Se a massa do corpo menor não pode ser desprezada, então o período orbital deve ser calculado por:
em que a é o semieixo maior da órbita de um dos corpos em relação ao outro. Em relação ao centro de massa, o corpo de massa M1 percorre uma elipse de semieixo maior , e o corpo de massa M2 percorre uma elipse de semieixo maior .





Orbitais atômicos (português brasileiro) ou orbitais atómicas (português europeu) de um átomo, é a denominação dos estados estacionários da função de onda de um elétron (funções próprias do Hamiltoniano (H) na equação de Schrödinger , onde  é a função de onda).[1] Entretanto, os orbitais não representam a posição exata do elétron no espaço, que não pode ser determinada devido à sua natureza ondulatória; apenas delimitam uma região do espaço na qual a probabilidade de encontrar o elétron é mais alta. [2]

Números quânticos[editar | editar código-fonte]

  • O valor do número quântico  (número quântico principal ou primário, que apresenta os valores  [também representado por ]) define o tamanho do orbital. Quanto maior o número, maior o volume do orbital. Também é o número quântico que tem a maior influência na energia do orbital.
  • O valor do número quântico  (número quântico secundário ou azimutal, que apresenta os valores ) indica a forma do orbital e o seu momento angular. O momento angular é determinado pela equação:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 



A notação científica (procedente da espectroscopia) é a seguinte:
  • , orbitais 
  • , orbitais 
  • , orbitais 
  • , orbitais 
Para os demais orbitais segue-se a ordem alfabética.
  • O valor do  (número quântico terciário ou magnético, que pode assumir os valores ) define a orientação espacial do orbital diante de um campo magnético externo. Para a projeção do momento angular diante de um campo externo, verifica-se através da equação:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 



  • O valor de  (número quântico magnético de spin ou spin) pode ser . O valor de  que equivale a uma valor fixo .
Pode-se decompor a função de onda empregando-se o sistema de coordenadas esféricas da seguinte forma:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 



Onde
  •  representa a distância do elétron até o núcleo, e
  •  a geometria do orbital.
Para a representação do orbital emprega-se a função quadrada,  
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 


  , já que esta é proporcional à densidade de carga e, portanto, a densidade de probabilidade, isto é, o volume que encerra a maior parte da probabilidade de encontrar o elétron ou, se preferir, o volume ou a região do espaço na qual o elétron passa a maior parte do tempo.





Equação dependente do tempo[editar | editar código-fonte]

Usando a notação de Dirac, o vetor de estados é dado, em um instante  por . A equação de Schrödinger dependente do tempo, então, escreve-se:[5]
Equação de Schrödinger Dependente do Tempo (geral)
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 



Em que  é a unidade imaginária é a constante de Planck dividida por , e o Hamiltoniano  é um operador auto-adjunto atuando no vetor de estados. O Hamiltoniano representa a energia total do sistema. Assim como a força na segunda Lei de Newton, ele não é definido pela equação e deve ser determinado pelas propriedades físicas do sistema.




Na física quântica, a interação spin-órbita (também chamado efeito spin-órbita ou acoplamento spin-órbita) é qualquer interação de partículas de spin com seu movimento. O primeiro e mais conhecido exemplo disto é que a interação spin-órbita provoca mudanças nos níveis de energia atômica de elétrons devido a uma interação entre o momento de dipolo magnético do spin e o campo magnético interno do átomo gerado pela órbita do elétron em torno do núcleo. Isto é detectável como uma divisão de linhas espectrais. Um efeito similar, devido à relação entre o momento angular e da força nuclear forte, ocorre por prótons e nêutrons em movimento dentro do núcleo, levando a uma mudança nos seus níveis de energia no modelo de concha do núcleo. No campo da spintrônica, os efeitos spin-órbita de elétrons em semicondutores e outros materiais são explorados para aplicações tecnológicas.[1] A interação spin-órbita é uma das causas da anisotropia magnetocristalina.

    Momentos angulares e momentos magnéticos (imagem semi-clássica)[editar | editar código-fonte]

    Uma corrente numa espira tem associado a ela um momento magnético
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 



    onde  é a intensidade da corrente e  é o vector área cuja direção é perpendicular ao plano da espira e o sentido consistente com a regra do parafuso de rosca direita. Onde,
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 


    i = carga do electrão X número de vezes por segundo que o electrão passa num dado ponto = e.f onde f é a frequência de rotação do electrão.
    Módulo do momento de dípolo magnético
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 



    Cuja direção é oposta a do momento angular orbital  porque o electrão possui carga negativa.
    Agora
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 



    Portanto
     (Z)
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 



    Dado que o momento angular é quantizado temos:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 



    Na primeira órbita de Bohr, m = 1 e a equação (Z) torna-se
     (Y)
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 


    onde  é chamado magnetão de Bohr e o seu valor é dado por
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 



    Pode-se ver da Equação (Y) que  é anti-paralelo ao momento angular orbital.
    rácio entre o momento magnético e o momento angular orbital é chamado o rácio giromagnético clássico,
     (X)
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 


    O momento angular de spin também possui um momento magnético a ele associado.
    O seu rácio giromagnético é aproximadamente duas vezes o valor clássico para o momento orbital, isto é,
     (K)
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 


    Isso significa que o spin é duas vezes mais eficaz em produzir um momento magnético do que o momento angular.
    Equações (X) e (K) são muitas vezes combinados, escrevendo
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 


    onde a grandeza g é chamada o fator de divisão espectroscópico. Para momentos angulares orbitais g = 1, para spin apenas g ≈ 2 (embora experimentalmente g = 2.004).
    Para os Estados que são misturas de momento angular orbital e momento angular de spin, g não é inteiro .
    Dado que
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 


    O momento magnético devido ao spin do electrão é:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 


    Assim, a menor unidade de momento magnético para o electrão é o magnetão de Bohr, quer se combine momento angular orbital ou spin.

    A interação spin-órbita (mecânica quântica)[editar | editar código-fonte]

    Na inclusão introdutória do spin na função de onda de Schrodinger, supõe-se que as coordenadas do spin são independentes das coordenadas do espaço de configuração.[2]
    Assim, a função de onda total é escrita como uma função de produto.
     (P)
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 



    A suposição feita acima implica que não existe interação entre L e S, i.e
    Neste caso,  é uma auto-função de ambos  e  e portanto  e  são bons números quânticos; em outras palavras, as projeções de  e  são constantes do movimento.
    Mas na verdade existe uma interação entre  e  chamada interação Spin-Órbita expressa em termos da grandeza .
    Dado que  não comuta quer com  ou com , a equação (P) torna-se incorreta e  e  deixam de ser bons números quânticos. 
    Nós imaginamos a interação spin-órbita como o momento magnético spin estacionária interagindo com o campo magnético produzido pelo núcleo orbitante.
    No sistema de referência de repouso do electrão, há um campo eléctrico
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 



    Onde  dirige‐se do núcleo em direção ao electrão. 
    Assumindo que  é a velocidade do electrão no sistema de referência de repouso do núcleo, a corrente produzida pelo movimento nuclear é: 
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 


    No sistema de referência de repouso do electrão.
    Portanto
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 


    O momento de spin do electrão realiza um movimento precessional neste campo com frequência de Larmor:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 


    Com energia potencial
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 


    As equações acima são válidas no quadro de referência de repouso electrão.
    A Transformação para o sistema de referência de repouso do núcleo introduz um fator de ½ - chamado o fator de Thomas. [Isto pode ser mostrado, calculando o tempo dilatado entre os dois sistemas de referência em repouso].[2]
    Portanto, um observador no sistema de referência de repouso do núcleo poderia observar o electrão a realizar um movimento de precessão com uma velocidade angular de
     (T)
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 


    e por uma energia adicional dada por
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 


    As duas Eqs acima podem ser colocadas em uma forma mais geral, restringindo o V ser qualquer potencial central com simetria esférica.
    De forma que
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 


    e então
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 



    A equação (T) torna-se então
    E a energia adicional
    O produto escalar
    Para spin = ½
    A separação energética se torna então
    Para o potencial de Coulomb a separação energética pode ser aproximada por:
    Onde
     ou 
    Um resultado útil no cálculo é citado sem prova. O valor médio de  i.e.
    para 
    De modo que a separação energética se torna
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 



    para 

    Esquemas de acoplamento do momento angular[editar | editar código-fonte]

    Consideramos até agora somente o acoplamento do spin e momento orbital de um único electrão por meio da interação spin-órbita. Nós agora vamos considerar o caso de dois electrões nos quais há quatro momentos constituintes.

    O modelo de acoplamento j - j[editar | editar código-fonte]

    Este modelo assume que a interação de spin-órbita domina as interações electrostáticas entre as partículas.
    Assim, nós escrevemos para cada partícula

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 


    O momento angular total é obtido combinando  e  :
    .
    sendo assim temos
    Ilustramos o acoplamento j-j aplicando-o a dois electrões p não equivalentes.
    Para cada electrão
     ou 
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS 

    Em um campo magnético fraco, cada Estado de um determinado j irá desdobrar-se em (2j+1) estados, correspondendo aos valores permitidos de mj.
    Embora o acoplamento j-j seja amplamente utilizado para a descrição dos estados nucleares observados em espectroscopia nuclear, não é adequado para muitos sistemas atómicos por causa das interações electrostáticas e outras interações entre os dois electrões.